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Host-Sensitized Luminescence of BY in Nanocrystalline
B-Ga,0; Prepared by a Pechini-Type Sol-Gel Process
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Nanocrystalline undope@-Ga0; and Dy *-doped-GaO; were prepared through a Pechini-type sol-gel process. All the
samples began to crystallize at 600°C, and the crystallinity increased with the increase of annealing temperatures until 1000°C.
Field emission-scanning electron microscopy study revealed th@-tBe,0,:Dy°" sample is composed of aggregated particles

with sizes ranging from 40 to 80 nm and spherical morphology. Und@p&k,O; sample shows a strong blue emission peaking

at 438 nm. The DY, mainly occupied the octahedral Hasites inB-Ga0,, shows its characteristic emissions in the blue
460-505 nm {Fy,-®H;s) and yellow 570-0600 nm*Eq-®H;3/) regions due to an efficient energy transfer from gh&a,0,

host lattices. The optimum concentration for the luminescencd Bydetermined to be 2 atom % of &ain Ga,0, host.
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Rare earth ions have been playing an important role in modern Experimental
lighting and display fields due to the abundant emission colors based ; } +_ )
on their 4f-4f or 5d-4f transition$In order to be excited efficiently, Saggggcxsrtgllgng?gg pt?]?ou%%% sgghigﬁypioggﬁgeleggfess by
phosphors activated with rare earth ions should have a strong angsing B-Ga0, [content= 99.99%, impurities: 3 (Cu, Pb, Zn)
broad absorption band in the UV or VUV region depending on the _ 17 ppm; X (Al, In, Ca) < 0.7 ppm;>(Fe, Sn, Ni)< 2.5 ppm;
practical application situation. For example, the tricolor quorescentE(Si‘ Hg, Mg) < 1.5 ppm, Shanghai Shiyi Chemicals Reagent Co.,
lamp phosphors have a st'rong_ a_nd broad abso_rption band aro”'ﬂmited] and Dy,0; (content= 99.9%, Shanghai Yuelong Nonfer-
254 nm (UV) to meet the irradiation from the discharge of low- 4,5 Metals Co., Limitedas the starting materials. The doping con-
pressure mercury vapor. _ _ _ _ centration of Dy* is 1.0-3.5 atom % of G4 in B-GaO;. The

The luminescence of trivalent dysprosium Dymainly consists stoichiometric amounts of the starting materiglsGa,0; and
of narrow lines in the blug470-500 nm,*Fo;-°His) and yellow  py. 0, were dissolved in diluted hydrochloric adiiCl) under stir-
(*Foi®Hyz;2, 570-600 nm wavelength region. The latter one be- ring and heating. Then citric acid and polyethylene glytREG,
longs to the hypersensitive transitioaAll = 2, AJ = 2), which is molecular weight= 10,000) were dissolved in the above solution
strongly influenced by the environmehft a suitable yellow-to-  (Cpgg = 0.01 M, citric acid/metal ion= 2:1 in per molg. The re-
blue intensity ratio, DY" will emit white light. Thus luminescent  sultant mixture was stirred at 75°C for 8 h. After concentrating the
materials doped with DY may be used as potential two-band solution by slow evaporation, a slightly yellow transparent sol was
phosphoré:> However, unlike the most frequently usedEuand obtained. Suph sol was dried in an oven at 110°C overnight, Ir;,:adlng
Th®* (in oxide hosts which have allowed charge-transfer absorp- to the formation of a yellow gel. The gel was preheated at 500°C for

) . - ) 4 h in air. After an intermediate grinding, the powder was sintered at
tion band(CTB) or 41-4f'5d absorption band in the UV region, vari:)usltemperatulres fromlﬁoogt(; 1(I)090°C inpa;,r\{ W !

respectively, the excitation spectrum of Dyconsists of only nar- Phase development in the postannealed powder samples was
row f-f transition lines from 300 to 500 nntboth the CTB and  checked by X-ray diffractiofXRD) on a Rigaku, D/max-I1B 2500
4°-4185d excitation band of Dy are located below 200 rftn As diffractometer using Cu K radiation(0.15405 nm. The morphol-
a result, the luminescence of Py cannot be excited with 254 nm ogy of the samples was inspected using field emission scanning
UV light, and the excitation can occur only by the f-f transitions electron microscopéFE-SEM, XL30, Philips. The excitation and
with low oscillator strength (10F) due to their forbidden features ©€mission spectra were taken on a F-4500 spectrofluorimeter

by the parity selection rultThis drawback of D§* luminescence equipped with a 150 W xenon Iamp as the excitation source. Lumi-
.nescence decay curves were obtained from a Lecroy Wave Runner

can be overcome by sensitization, such as host sensitization - g . .
YVO. D 3\,/+3 and ioz senslitlizzatlion inu CBL(SIO,)60 Fl>tl)§+ N 100 digital oscilloscop€l GH2) using 254 nm laser (pulse width
a0y 4/6-2: ' = 4 n9 as the excitation sourd€ontinuum Sunlite, OPDAIIl the

3+ 7
Dy*". . ) . . measurements were performed at room temperature.
B-Ga0; is a wide bandgap semiconductor compound with an
optical bandgapgg) of about 4.8 e\ which has long been known Results and Discussion

to. show bqth conduct!on af‘?’ I_ligninescence properties. with and The results of XRD indicate that the sample remained amor-
without doping foreign |m'pur|t|e§. Recently, much attention has 15" after a 500°C heat-treatment, began to crystallize at 600°C,
been paid to the preparation of nanostructige@a0; with differ-  anq the crystallinity increased with raising the annealing tempera-
ent morphology, such as nanowirés, nanoribbons? and  tyre to 1000°C. Representative XRD patterns of the undégeahd
nanobelts® B-Ga,0; has also been used as a phosphor host matepy3*-doped(b) samples annealed at 1000°C as well as that for the
rial for application in thin-film electroluminescen¢BFEL)'"*and  standard3-Ga,0; (c, JCPDS card no. 11-3¥@re shown in Fig. 1.
cathodoluminescend€L) displays® In this paper, we report host-  As seen clearly in Fig. 1, all the diffraction peaks of the undoped
sensitized luminescence of By in nanocrystalline3-Ga,0O; pre- and Dy *-doped samples can be assigned exactly to the standard
pared by a Pechini-type sol-gel process. data of-Ga,0;. No second phase was detected, indicating that the
Dy®* ions have been successfully dissolved in fhe5a,0; host
lattices by substitution for the Ga. B-Ga0; belongs to mono-
2 E-mail: jlin@ns.ciac.jl.cn clinic crystal system with a space group®2/m, and there are four
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Figure 1. The XRD patterns for undope@) and 1.5 atom % DY -doped
(b) B-Ga0; annealed at 1000°C as well as that for the stang@a@a, O,
[(c) JICPDS Card no. 11-370

Gag0; formulas in unit cell Z = 4). The calculated lattice con-
stants a = 1.213 nm, b = 0.304 nm, ¢ = 0.580 nm, beta
= 103.6° forp-Ga,0,5:Dy®" sample are in good agreement with
the reported valuesa(= 1.223 nmb = 0.304 nm,c = 0.580 nm,
beta= 103.7°) of-Ga0;. No obvious change is observed for the
lattice constants due to the low doping concentratibb atom % of
G&") of Dy** in B-Ga0s;.

Intensity (a.u.)

d T d T T T d
In general, the nanocrystallite size can be estimated from the 300 400 500 600 700
Scherrer equationp = 0.941\/B cos6, where D is the average Wavelength{nm)
grain size\ is the X-ray wavelengtli0.15405 nny, 6 and are the
diffraction angle and full-width at half-maximuitfwhm) of an ob-  Figure 3. Excitation(a) and emissiorb) spectra of 1.5 atom % By-doped
served peak, respectively. The strongest peak200 at 20 B-Ga0; (black solid ling and undoped-Ga,0; (dash liné annealed at
= 31.62° was used to calculate the average crystallite (Ezef 1000°C.

B-Ga,0;:Dy®" sample annealed at 1000°C, which yields a value

about 38 nm. Figure 2 shows the FE-SEM micrograph of

B-Gg0;:Dy*" sample annealed at 1000°C. It is seen clearly thatsyrprising because smaller nanograins contribute more to the broad-
the B-Ga0;:Dy*" sample is composed of aggregated particles ening of the diffraction peaks as reported previodsly.

with sizes ranging from 40-80 nm and spherical morphology. The  Under 254 nm UV excitation, the nanocrystalline
average grain sizes estimated from the Scherrer equation are 5ma||Br-GaZO3:Dy3+ sample shows a strong blue luminescence. Figure
than those determined from the FE-SEM micrograph. This is not3y shows emission spectrum BfGa,05:Dy3", which is domi-
nated by two main groups of lines in the blue region 460—505 nm
(B) and yellow region 570-600 nrt¥) accompanied by a group of
weak lines in the red region from 650 to 700 iRy, seen 100 times
magpnification. These emissions correspond to the transitions from
4Fg;2t0 ®Hys0, ®Hysp0, and®Hyyj, of DY3", respectively® The crys-

tal splitting components of By emission can be observed, but not
totally resolved due to the weak experimental resolution. Note that
the integrated intensity of the blue emissidird,-%H;s)) is stron-

ger than that of the yellow emissiofiRy,-®H,3,) for Dy®" in the
nanocrystalling3-Ga,O;. This spectral property of BY provides
some information on the site occupation ofDyin B-Ga05 host
lattices. It is well known that like theD,-F, red emission of EtI',

the *Fg/,-%H, 3/, yellow emission of D§" belongs to hypersensitive
transitions withAJ = 2, which is strongly influenced by the outside
surroundings:* When Dy** is located at a low symmetry local site
(without inversion symmetry centerthis emission is often domi-

i~

AceV  Spol Maan  Del WREFap |—7;| 500 nm nated in the emission spectrum; on the other hand, wher aya
PR RO i URL 10 A high symmetry local sitewith inversion symmetry centgr its
4Fg/-®Hy5/, blue emission will be stronger than the yellow one
Figure 2. FE-SEM micrograph for 1.5 atom % By-dopedp-Ga,0; an- (*Forr ®Hia) and dominated in the emission spectrtidf. The lat-
nealed at 1000°C. ter case occurs for By in B-Ga0, and can be explained accord-
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ing to the crystal structure @§-Ga&0O;. The monoclinicf-Ga0; | 4®__, CB |

contains two kinds of G& ions within equal quantity, one in tetra- \

hedral site (T point symmetry, without inversion cenjecoordi- Energy transfer .
nated by four oxygen atoms, the other in octahedral sitep@nt Dencebend \ —— 1 1512
symmetry, with an inversion cenjecoordinated by six oxygen Raditiwe —I—Iﬂ—l— 4Fm
atoms?2 The spectral property of [5‘5# indicates that the D’V ions EX recomb ination Elue hv - ke Bhe
mainly occupy the octahedral &asites inp-Ga,0; host lattices. EM  inm  579am  #lam

In fact, the octahedral Ga sites would be more suitable for ES/ |

than the tetrahedral G4 sites. Considering the ionic radii, Accopier X SH,,,,

r(Dy®") = 0.0912 nm for six coordinatiorr,(Ga&®") = 0.062 nm &\E&\\\\\\\\\\@\&\\\\\\& ;, iHmz

for six coordination and 0.047 nm for four coordination
respectively? it is easier for Dy* to replace the octahedral &a
than the tetrahedral Gain B-Ga05 host lattices. Few compounds
contain four-oxygen coordinated BY in nature. Figure 4. A simple model illustrating the blue emission procesgiGa,0;

The excitation spectrum of By in nanocrystalling3-Ga,O; is and the energy transfer to BY.
exhibited in Fig. 3a, which consists of a strong excitation band from
200 to 275 nm with a maximum at 254 nm and some weak lines
(329, 354, 368 nm, only seen clearly by 100 times magnificafion The luminescence decay curves for undoped5a,0; and
the longer wavelength region. Clearly, the latter is due to the f'fB-GaZO3:Dy3+ are shown in Fig. 5a-c, respectively. For undoped
transitions (329 nm:6|—!15,_2-6_P3,2; 354 r_‘m:e"_'15/2'6P7/2; 368 nm:  5_G4,0,, the decay curvéFig. 53 is complicatedj.e., the lumi-
®Hisiz °Pspp) of Dy within its 4f configuration. In order to iden-  pegcence first shows a rise from= 0 to t = 14 ns followed a
tify the origin of the former(strong excitation band at 254 nnihe decay fromt = 14 ns tot = 21 ns, again a rise from= 21 ns to
excitation and emission spectra of undoped nanocrystalling _ 5g s then decays exponentially. This kind of decay behavior
B-G&,0; were measured and shown as dashed lines in Fig. 3a, bingicates that there exists an energy migration process after excita-
respectlvgly. The excitation spectrum of undoped_ nanocrystalling;gn, in undopedB-Ga,0;. The main decay is very fast: the time
B-G&0; is also composed of a strong band ranging from 200 10 from the maximum intensity,, (t = 28 n9 to its 1/e intensityl e
275 nm with a maximum at 258 nm, whose profile is very similar to (1../e, e is the irrational number 2.71828is 32 ns. The energy
the strong UV excitation band of trgsGa,05:Dy*". This indicates  migration can occur either by diffusion of free holes or diffusion of
that the two strong excitation bands have the same oriigin both self-trapped holes, and can also be observe@ia0;:Dy"
from the B-Ga&0; host lattices. On the other hand, the emission sample. The Iuminescenc@91 nm decay curves of DY in
spectrum of undoped nanocrystallifie Gg,0; contains a broad  g.Ga,0, contain short componer(Fig. 5b and long component
band ranging from 350 to 600 nm with a maximum at 438(ne (Fig. 50. The decay behavior of the short componéfiy. 5b) is
emission, which is absent in the emission spectrum of gimilar to that of-Ga0; host lattices in Fig. 5a. Note that the
B-Ga,05:Dy*" under excitation into the UV band at 254 nm. These g-Gg,0, host lattices also show emission at 491 nm with moderate
results suggest that an energy transfer has occurred #rd8@,0; intensity(Fig. 3b). So this short decay component must be due to the
host lattices to the doped By in B-Ga,05. Moreover, such energy B-Ga,0; host lattices. However, fq3-Ga,05:Dy3" in Fig. 5b, the
transfer is very efficienfclose to 100%because no emission from  time from the maximum intensitl;, (t = 28 n9 to its 1/e intensity

B-Ga,0; py"

B-Ga&0; host lattices is detected iB-Ga05:Dy*", i.e, an effi- |, is 19 ns, a value shorter than tH82 n3 of undopeds-Ga,0s.

cient host-sensitized luminescence of*Dyoccurs in the nanocrys-  This is because the excitation energy has transferred to an additional

talline B-Ga0;, just like YVO,:Dy*" reported previously. emission center (DY) in B-Ga0;:Dy*". The long component
The photoluminescence frofd-Ga,0; host lattices has been (Fig. 50 can be fitted by a second exponential function! &

reported both in polycrystaline powde and single-crystal = A;exp(—t/r)) + A,exp(t/r,), wherer; andr, are the fast and

forms!!12Briefly, the blue emission can be attributed to the recom- slow components of the luminescent lifetimés, and A, are the
bination of an electron on a donor formed by oxygen vacancies withfitting parameters, respectively. The fitting results in Fig. 5cAye

a hole on an acceptor consisting of either gallium vacancies or= 0.0064,t, = 0.613 ms,A, = 0.0039,7, = 5.62 ms. It is as-
gallium-oxygen vacancy pairs. These vacancies would be pro- sumed that the fast component (0.613 m$ is mainly from the
duced by the impurities in the starting matefidlshould be kept in Dy3* itself, and the slow component, (5.62 m3 is from an un-
mind that undoped G&®; contains impurities in the ppm range, as known emission center which coincides with the emission otDy
stated in the Experimental sectjor simple model illustrating the iy 3-Ga,0, host lattices. At this stage this emission center cannot
blue emission process {B-Ga,0; and the energy transfer to By be identified clearly.

is shown in Fig. 4. Under the excitation of 254 nm irradiatiband- By varying the content of DY ion in Ga0; samples, we de-
gap excitatiol, an electron(®) is excited from the valence band termined the compositions with the highest emission intensity. Fig-
(VB) to the conduction bandCB). The electron®) moves freely ~ ure 6 shows the dependence of the emission intensity of
around the CB, finally relaxes to the donor bdogygen vacancigs Dy (*Fg~®Hi5) on its  doping concentration (x) in

The reCmeina’[iOﬂ Of the eleCt.ron in the donor band Wlth the accepGaz(l_x)Dy2X03 samples. It can be found from Fig. 6 that the emis-
tor (gallium vacancies or gallium-oxygen vacancy pay®lds a  sjon intensity of D§* increases with the increase of their concen-
blue emission with a maximum wavelength at 438 (#iy. 4, lefd.  rations (x) first, reaching a maximum value at= 2 mol %, and
When Dy'* is present in3-Ga0; host lattices, the excitation en-  then decreases with increasing its conteatdue to the concentra-
ergy can be nonradiatively transferred to®Dyresulting in its char-  tion quenching. Thus the optimum concentrations fof Dis 2 mol
acteristic emission, as shown in Fig(dght). The blue emission of o4 of G2+ in the Ga0; host. The concentration quenching of Dy
B-Ga0; host lattices has been quenched when a low concentratioluminescence is mainly caused by cross relaxatiom, energy

of Dy** (1.5 atom % of G&") was introduced, indicating that an  transfer from one D3/ to another by transition that are matched in
energy migration has occurred it Ga,05 host lattices. This can be  energy® These transitions are mainly BY(*Fo,) + Dy**(®Hys))
further proved by the kinetics study for the luminescence of — Dy**(°F,,) + Dy®*(®F;;,). Because the luminescence
B-Ga0; andB-Ga0;: Dy, quenching is caused by the energy transfer within the same rare
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Dy®* indicate that the doped By ions mainly occupy the octahe-
dral coordinated G4 sites that possess an inversion symmetry cen-
; g ; ter in B-Ga 03 host lattices. The optimum concentration for the
50 100 150 200 luminescence DY' is determined to be 2 atom % of &ain Ga,0,
Decay time (ns) host. The nanocrystalling-Ga,0,:Dy®" is a good photolumines-
10 cent material suitable for 254 nm UV excitation.
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