Synthesis and Thermoelectric Properties of Bi$_2$S$_3$ Nanobeads

Jiye Fang, Feng Chen, Kevin L. Stokes, Jibao He, Jinke Tang and Charles J. O’Connor
Advanced Materials Research Institute, University of New Orleans, LA 70148
E-mail: jfang1@uno.edu

ABSTRACT

Bismuth sulfide (Bi$_2$S$_3$), a direct band gap material with $E_g \approx 1.3$ eV, attracts high interest in thermoelectric investigations. In this work, nanometer-sized bismuth sulfide with unique morphology has been successfully prepared by a precipitation between bismuth 2-ethylhexanoate and thioacetamide in high-temperature organic solution with presence of proper capping/stabilizing agents. By employing this technique, we are able to produce nanobeads of bismuth sulfide with an aspect ratio of ~ 5, typically ~10 nm wide and ~50 nm long according to the TEM observation. Characterization of XRD and TEM/HRTEM reveals that the as-prepared particles exist in single orthorhombic phase and possess high crystallinity. The composite ratio between Bi and S can be adjusted by varying the ratio between two precursors and was determined by using EDS (TEM) technique. Thermoelectric properties of these bismuth sulfide nanobeads were also investigated and will be discussed comparatively with those from commercial bulk materials.

INTRODUCTION

Bismuth sulfide (Bi$_2$S$_3$) is an important member of thermoelectric materials and is a typical semiconductor as well. In bulk form, it possesses a direct band gap of $E_g = 1.3$ eV [1]. It is generally accepted that the band gap changes when bulk materials are transferred into nanophase due to the quantum confinement effects. It is therefore believed that the thermoelectric efficiency of nanometer-sized Bi$_2$S$_3$ may be apparently improved.

Conventionally, Bi$_2$S$_3$ nanorods can be prepared by hydrothermal method [2-4], and Bi$_2$S$_3$ nanoparticles can be obtained using microwave irradiation [5] and thermal decomposition [6,7] routes. In this work, we employed a high temperature organic solution approach and produced, for the first time, Bi$_2$S$_3$ nanobeads with controlling the aspect ratio by selection of capping agent.

EXPERIMENTAL

The chart in Figure 1 illustrates the Material synthesis. In this approach, diphenyl ether was selected as a high boiling point reaction medium. Bismuth 2-ethylhexanoate, dissolved in diphenyl ether, was used as the bismuth precursor. Thioacetamide (TAA) was used as the precursor precipitating agent. Two part systems were prepared simultaneously. For part A, TAA (99+, 0.8744g) was added into a round bottle flask containing 1-dodecanethiol (98+, 4 ml), di(ethylene glycol) 2-ethylhexyl ether (98%, 2 ml) and diphenyl ether (99%, 8 ml) under argon stream. The system was gradually heated to 110 °C while being stirred until TAA was
completely dissolved. For part B, oleic acid (90%, 2 ml; all above chemicals were from Aldrich) and a freshly-prepared solution of bismuth 2-ethylhexanoate (Alfa Aesar, 99.9%) in diphenyl ether (0.2M, 2 ml) were added into a three-neck flask that contains diphenyl ether (70 ml). Part A was injected into this reaction container while part B was stirred and heated to 180 °C under an Ar stream. The resulting solution was maintained at this temperature for 1 min before the heating source was removed. The mixture was then cooled down to room temperature, and Bi$_2$S$_3$ particles were precipitated by adding ethanol (60 ml) to the system and collected by centrifugation. The resulting Bi$_2$S$_3$ powder was kept in vacuum at room temperature overnight for further use. To characterize the conductivity, powder of as-prepared Bi$_2$S$_3$ was pressed into a pellet with a diameter of 9 mm and a thickness of ~1 mm. This pellet was sintered at 400 °C for 4 hours under argon atmosphere.

Figure 1. Flow chart for the preparation of Bi$_2$S$_3$ via high temperature solution processing.
RESULTS AND DISCUSSION

The phase identification of as-prepared Bi$_2$S$_3$ powder was performed at room temperature using a (Cu K$_\alpha$ radiation) X-ray diffractometer (Philips X’pert System). All the peaks in this XRD pattern, as illustrated in Figure 2, were indexed as those from orthorhombic Bi$_2$S$_3$ crystal by the comparison with the standard ICDD PDF Card of Bi$_2$S$_3$ (17-0320). Confirmed by TEM diffraction pattern (Figure 3), this XRD pattern also indicates that our product possesses high crystallinity with a single orthorhombic phase.

![Figure 2. XRD trace of the Bi$_2$S$_3$ particles prepared at 180 °C](image)

![Figure 3. TEM image: Diffraction pattern of Bi$_2$S$_3$ particles](image)

Figure 4 shows a light scattering result of as-prepared Bi$_2$S$_3$ particles dispersed in hexane, exhibiting the size distribution of particles. It demonstrates that the mean hydrodynamic radius of the sample is rather narrow, only ranging between 100 and 200 nm. As well known, the mean value of the size estimated using this technique is always larger than the actual one characterized by TEM due to the different instrumental nature of working function. Therefore, it is not true that both results can be always comparable. However, result from light scattering does provide the degree of particle distribution. We have also carefully checked the composition of the powder sample by using energy dispersive x-ray spectroscopy (EDS) in TEM. A typical spectrum is showed in Figure 5. The average elemental ratio between sulfur and bismuth was calculated as 58.7 to 41.3 (atomic percentage).
Figure 4. Bi$_2$S$_3$ particle size distribution

Figure 5 (a-c) are the transmission electron microscopy images of Bi$_2$S$_3$ particles prepared at 180 °C. Figure 5 (a) shows the morphology of the bead-shaped particles with average dimensions of ~15nm x 50nm. From our supporting experimental results, we noted that the formation of these elongated particles is most likely due to the related capping agent, i.e. 1-dodecanethiol in current investigation. Figure 5 (b) is an additional morphology image with higher magnification on selected zone, which indicates that all the elongated particles are highly crystalline. Figure 5 (c) is a high resolution TEM image showing the lattice structure on a single particle.

Most literature reports that Bi$_2$S$_3$ is semiconductor with a band gap of ~1.1-1.5 eV [8,9], except one research group [10], which reported metallic Bi$_2$S$_3$. We observed flat temperature dependence for resistivity (ρ) of our samples, shown as the solid curve in Figure 6. The inset of the figure was plotted in different scale to show the detailed temperature dependence of
resistivity. For comparison, we also plotted the data from Ref. [10] in dashed curve. We exclude the possibility of high scattering resistance due to defects, since our data is one order of magnitude smaller than that of metallic Bi$_2$S$_3$ at room temperature [10]. It is very likely our sample is semimetal. This is supported by the fact that our Seebeck coefficient (S) is only about 1/5 of that reported by others [10]. Figure 7 shows the Seebeck coefficient plotted against temperature. It has the shape typically observed in degenerated electron gas, except the magnitude, which is a little bit smaller than most semiconductors, possibly due to the cancellation of two bands of different sign of carriers, which is the case for semimetals. Ref. [10] argued that the sulfur deficiency in Bi$_2$S$_3$ made the sample metallic. Our data showed lower resistivity than Ref. [10] and the estimated sulfur deficiency is also higher than Ref. [10]. In this case the sample should be more metallic, while we observed semimetal-like resistivity. This could be explained by either the resistivity data reflects different levels of influence of grain boundaries, or could be something special due to the nature that our raw material is nano-composite. We are currently trying different sulfur concentration and different annealing temperature to investigate this problem.

Figure 6. Comparison of resistivity of our Bi$_2$S$_3$ sample and the lowest from the literature. Solid curve is our data and the dashed curve is from Ref.[10]. Inset: same data of solid curve plotted in different scale.

Figure 7. Seebeck coefficient for our Bi$_2$S$_3$ sample.
CONCLUSIONS

Bismuth sulfide nanobeads have been successfully synthesized through a high temperature organic solution processing route. The crystallinity, particle size distribution, composite ratio and morphology of as-prepared powder were systemically analyzed using XRD, light scattering and EDS/TEM, respectively. Thermoelectric characterization indicates that our as-prepared nanostructured material is a semimetal, suggesting that sample sintered from these nanobeads of bismuth sulfide may be a promising thermoelectric material.

ACKNOWLEDGMENTS
This work was supported by DARPA through Army Research Office grant DAAD19-99-1-0001 and by LA Board of Regents, NSF/LEQSF grant (2001-04)-RII-03.

REFERENCES